
Relationship between squeezing and entangled state transformations

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2003 J. Phys. A: Math. Gen. 36 5319

(http://iopscience.iop.org/0305-4470/36/19/309)

Download details:

IP Address: 171.66.16.103

The article was downloaded on 02/06/2010 at 15:29

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/36/19
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 36 (2003) 5319–5332 PII: S0305-4470(03)53117-1

Relationship between squeezing and entangled state
transformations

Fan Hongyi1,2,3 and Fan Yue2

1 CCAST (World Laboratory), PO Box 8730, Beijing, 100080, People’s Republic of China
2 Department of Physics, Shanghai Jiao Tong University, Shanghai 200030, People’s Republic of
China
3 Department of Material Science and Engineering, University of Science and Technology of
China, Hefei, Anhui 230026, People’s Republic of China

Received 3 September 2002
Published 29 April 2003
Online at stacks.iop.org/JPhysA/36/5319

Abstract
We show that c-number dilation transform in the Einstein–Podolsky–
Rosen (EPR) entangled state, i.e. |η1, η2〉 → |η1, η2/µ〉 (or |η1, η2〉 →
|η1/µ, η2〉), maps onto a kind of one-sided two-mode squeezing operator
exp

{
i λ2 (P1 + P2)(Q1 + Q2) − λ

2

} (
or exp

{
i λ2 (P1 − P2)(Q1 − Q2) − λ

2

})
.

Using the IWOP technique, we derive their normally ordered form and
construct the corresponding squeezed states. In doing so, some new relationship
between squeezing and entangled state transformation is revealed. The dynamic
Hamiltonian for such a kind of squeezing evolution is derived. The properties
and application of the one-sided squeezed state are briefly discussed. These
states can also be obtained with the use of a beam splitter.

PACS numbers: 42.50.Dv, 03.65.U

1. Introduction

Squeezed states of a light is an important topic in quantum optics [1, 2] and will be more
widely used in quantum detection, because the quantum fluctuation of one quadrature of a light
field in a squeezed state is less than that in a coherent state. The two-mode squeezed states
will have potential uses in quantum communication because the idler-mode photon and signal-
mode photon in a two-mode squeezed state are entangled in the frequency domain (a quantum
entanglement phenomenon). One may put it in another way, that the correlations between idler
mode and signal mode give rise to two-mode squeezing [3]. This is evidence that in two-mode
systems there is a richer variety of quantum phenomena demonstrating quantum correlations
between the modes. For two-mode optical fields, the quadrature operators characteristic of
quantum fluctuations of various states are [1]

a1 + a2 + a†1 + a†2
23/2

≡ X
a1 + a2 − a

†
1 − a

†
2

23/2i
≡ P (1)
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satisfying the commutative relation

[X,P ] = i/2. (2)

If one introduces

ai + a†i√
2

= Qi

ai − a
†
i√

2i
= Pi i = 1, 2 (3)

then

X = (Q1 +Q2)/2 P = (P1 + P2)/2. (4)

The two-mode squeezing operator is [1]

S′′ = exp
[
λ
(
a
†
1a

†
2 − a1a2

)] = exp[−iλ(P2Q1 +Q2P1)] (5)

which squeezes

S′′XS′′−1 = eλX S′′PS′′−1 = e−λP. (6)

Based on the idea of quantum entanglement proposed by Einstein–Podolsky–Rosen (EPR)
[4], we have revealed in [5] that the two-mode squeezing operator actually squeezes the EPR
entangled state |η〉, i.e.

S′′|η〉 = 1

µ

∣∣∣∣ ηµ
〉

µ = eλ (7)

where |η〉 is defined as [6, 7]

|η〉 = exp
[− 1

2 |η|2 + ηa†1 − η∗a†2 + a†1a
†
2

]|00〉. (8)

η = η1+ iη2 is a complex number, |00〉 is the two-mode vacuum state. |η〉 obeys the eigenvector
equations

(Q1 −Q2)|η〉 =
√

2η1|η〉 (P1 + P2)|η〉 =
√

2η2|η〉 (9)

namely, |η〉 is the common eigenvector of P1 + P2 and Q1 − Q2. The motivation of paper
[5] stemmed from two observations: (1) the quadrature operator (P1 + P2) /2 is one of the
object operators discussed in the paper of Einstein–Podolsky–Rosen, who used the fact that
the total momentum of the two particles, P1 + P2, commutes with their relative coordinate
Q1 −Q2 to elucidate a mysterious correlation between the two particles [4], (2) the two-mode
squeezing operator S′′ causes quantum entanglement between the two modes of squeezed
light as demonstrated in a parametric down conversion process. Thus, there must exist an
intrinsic relation between S′′ and the EPR-entangled |η〉. Because |η〉 makes up a complete
and orthonormal representation [5]∫

d2η

π
|η〉〈η| = 1 (10)

〈η′|η〉 = πδ(η − η′)δ(η∗ − η′∗) = πδ(η′
1 − η1)δ(η

′
2 − η2) ≡ πδ(2)(η − η′) (11)

we have

S′′ = 1

µ

∫
d2η

π

∣∣∣∣ ηµ
〉
〈η| µ = eλ (12)

which means that the two-mode squeezing operator just has its natural representation in the |η〉
representation. The physical meaning in (12) is twofold: (1) it directly relates the EPR state
with the two-mode squeezing, we now understand more deeply that the two-mode squeezed
state has its idler mode and signal mode entangled with each other, (2) equation (12) shows
that the quantum mechanical image of a classical dilation η → η

µ
in the EPR state |η〉 is just
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the two-mode squeezing operator. Like q → q/µ in a coordinate eigenstate |q〉 mapping onto
the single-mode squeezing operator, we see that the ideal EPR state |η〉 is on the same footing
as the state |q〉, so far as the squeezing is concerned. The state |η〉, as a fundamental basis
vector, is indispensable for continuous variable entangled states.

If we rewrite |η〉 as

|η〉 = exp
[− 1

2 |η|2 + η1
(
a
†
1 − a

†
2

)
+ iη2

(
a
†
1 + a†2

)
+ a†1a

†
2

]|00〉 ≡ |η1, η2〉 (13)

then an interesting question naturally arises: what are the squeezing operators which
respectively squeezes |η1, η2〉 → |η1, η2/µ〉 and |η1, η2〉 → |η1/µ, η2〉? In this work we
shall reveal that there exists another kind of two-mode squeezing operator,

S ≡ ei λ2 (P1+P2)(Q1+Q2)− λ
2 = exp

[
λ

4

(
a2

1 − a
†2
1 + a2

2 − a
†2
2 + 2a1a2 − 2a†1a

†
2

)]
(14)

which plays the role of asymmetric shrink transform

S−1|η1, η2〉 → 1√
µ

|η1, η2/µ〉 (15)

and the operator S′ ≡ ei λ2 (P1−P2)(Q1−Q2)− λ
2 = exp

[
λ
4

(
a2

1 − a
†2
1 + a2

2 − a
†2
2 − 2a1a2 + 2a†1a

†
2

)]
makes the transform S′−1 |η1, η2〉 = 1√

µ
|η1/µ, η2〉 . We name them one-sided squeezing

operators and shall prove their roles in the following sections. After deducing their normally
ordered forms, we also construct the corresponding squeezed states. We shall also briefly
compare these more general squeezed states with the conventional two-mode squeezed state
and discuss how to produce them dynamically. The Wigner functions of these one-sided
squeezed states will also be derived by virtue of the |η〉 representation. In doing so, some new
relationship between squeezing and the asymmetric shrink transform of the entangled state is
revealed. The dynamic Hamiltonian for generating one-sided squeezed states is derived, and
its generation with the use of a beam splitter is discussed.

2. The squeezing |η1, η2〉 → |η1, η2/µ〉
The Schmidt decomposition of |η〉 is [8]

|η = η1 + iη2〉 = e−iη2η1

∫ ∞

−∞
dq |q〉1 ⊗ |q −

√
2η1〉2 ei

√
2η2q (16)

where

|q〉i = π− 1
4 exp

[− 1
2q

2 +
√

2qa†i − 1
2a

†2
i

]|0〉i (17)

is the coordinate eigenstate, Qi |q〉i = q|q〉i, the subscript i = 1 (i = 2) denotes the a1-mode
(a2-mode) Fock space in which the coordinate eigenvector |q〉i is defined. The |η〉 state can
also be Schmidt-decomposed as

|η〉 = e−iη1η2

∫ ∞

−∞
dp |p +

√
2η2〉1 ⊗ |−p〉2 e−i

√
2η1p (18)

where |p〉i is the momentum eigenvector

|p〉i = π− 1
4 exp

[− 1
2p

2 + i
√

2pa†i + 1
2a

†2
i

]|0〉i . (19)

Using equation (16) we easily obtain

(Q1 +Q2)|η〉 =
∫ ∞

−∞
dx(2q −

√
2η1)|q〉1 ⊗ |q −

√
2η1〉2 eiη2(2q−

√
2η1)/

√
2 = −i

√
2
∂

∂η2
|η〉.

(20)
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On the other hand, using equation (18) we have

(P1 − P2)|η〉 =
∫ ∞

−∞
dp (2p +

√
2η2)|p +

√
2η2〉1 ⊗ |−p〉2 e−iη1(2p+

√
2η2)/

√
2 = i

√
2
∂

∂η1
|η〉.
(21)

From (20) and (21) we see that in the 〈η| representation

(Q1 +Q2) → i
√

2
∂

∂η2
(P1 − P2) → −i

√
2
∂

∂η1
.

Combining equation (20) with equation (9) we have

〈η|1

2
(P1 + P2)(Q1 +Q2) = iη2

∂

∂η2
〈η|. (22)

Let η2 ≡ ey, from (22) we derive

〈η|1

2
(P1 + P2)(Q1 +Q2) = i ey

∂y

∂η2

∂

∂y
〈η1, η2 = ey | = i

∂

∂y
〈η1, η2 = ey|. (23)

It then follows from (23) and e−λ ∂
∂y f (y) = f (y − λ) that

〈η| eiλ(P1+P2)(Q1+Q2)/2 = e−λ ∂
∂y 〈η1, η2 = ey | = 〈η1, ey−λ| = 〈η1, e−λη2| (24)

which means that the unitary operator S ≡ ei λ2 (P1+P2)(Q1+Q2)− λ
2 squeezes 〈η| as

〈η|S = 1/
√
µ〈η1, η2/µ|. (25)

Now using the completeness relation (10), we know the 〈η| representation of S,

S = e−λ/2
∫

d2η

π
|η〉〈η1, e−λη2| = eλ/2

∫
d2η

π
|η1, eλη2〉〈η|. (26)

Equation (26) shows that the quantum mechanical image of a classical dilation η2 → eλη2 in
the EPR state |η〉 is just the one-sided squeezing operator S.

3. The normally ordered form of S

Using (13) and the normally ordered expansion of the two-mode vacuum state

|00〉〈00| = : exp
[−a†1a1 − a

†
2a2

]
:

as well as the technique of integration within an ordered product (IWOP) of operators [9–11],
we can perform the integration in (26) and obtain its normally ordered expansion

S = e−λ/2
∫

d2η

π
: exp

{
−η2

1 − 1

2
η2

2(1 + e−2λ) + η1
(
a
†
1 − a

†
2

)
+ iη2

(
a
†
1 + a†2

)

+ a†1a
†
2 + η1(a1 − a2)− i e−λη2(a1 + a2) + a1a2 − a

†
1a1 − a

†
2a2

}
:

= e−λ/2
√

2

1 + e−2λ
: exp

{
1

4

(
a
†
1 − a

†
2 + a1 − a2

)2
+ a†1a

†
2 + a1a2 − a

†
1a1 − a

†
2a2

− 1

2(1 + e−2λ)

[
a
†
1 + a†2 − e−λ(a1 + a2)

]2
}

:

= sech1/2λ : exp

{
− tanhλ

4

[(
a
†
1 + a†2

)2 − (a1 + a2)
2]

+
1

2
(sechλ− 1)

(
a
†
1 + a†2

)
(a1 + a2)

}
:. (27)
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where tanhλ ≡ µ2−1
µ2+1 , sech λ = 2µ

µ2+1 . With the aid of the operator identity

exp
[
f

(
a
†
1 + a†2

)
(a1 + a2)

] = : exp
[

1
2 (e

2f − 1)
(
a
†
1 + a†2

)
(a1 + a2)

]
: (28)

we can further write (27) as

S = sech1/2λ e− tanhλ
4 (a

†
1+a†2)

2
e

1
2 (a

†
1+a†2)(a1+a2) ln sechλ e

tanhλ
4 (a1+a2)

2
. (29)

This is a new squeezing operator. Operating (29) on the vacuum state |00〉 yields a new
two-mode squeezed vacuum state

S|00〉 = sech1/2λ exp

{
− tanhλ

4

(
a
†
1 + a†2

)2
}

|00〉 (30)

or

S|00〉 = e−λ/2
∫

d2η

π
|η〉〈η1, e−λη2|00〉 = e−λ/2

∫
d2η

π
|η〉 e−(η2

1+η2
2e−2λ)/2. (31)

One may compare equation (30) with the usual two-mode squeezed state

S′′−1|00〉 =
∫

d2η

πµ
|η〉 e−|η2|/2µ2 = sechλ e−a†1a†2tanhλ|00〉 = sechλ

∑
n=0

(−tanhλ)n|n, n〉

|n, n〉 ≡ |n〉1|n〉2 |n〉1 = a
†n
1√
n!

|0〉1

(32)

and see their difference, that is, in equation (30) the operators a†21 , a
†2
2 and a†1a

†
2 coexist.

Expanding the exponential in (30), we have

S|00〉 = sech1/2λ

∞∑
n=0

(
− tanhλ

4

)n 1

n!

(
a
†
1 + a†2

)2n}|00〉

= sech1/2λ

∞∑
n=0

(
− tanhλ

2

)n 2n∑
l=0

1√
l!(2n− l)!

|l, 2n− l〉.

Thus, we see that the photon number distribution of the state S|00〉 is different from that of the
state S′′−1|00〉, the latter contains only the twin number state |n, n〉. By introducing the Noh–

Fougères–Mandel [12, 13] operational phase operator

√
a1−a†2
a2−a†1

and noting
[
a1−a†2, a2−a†1

] = 0,

and (
a1 − a

†
2

)|η〉 = η|η〉 (
a2 − a

†
1

)|η〉 = η∗|η〉
we see that its eigenvector is also the entangled state |η = |η|eiϕ〉 with the eigenvalue
being eiϕ, √√√√a1 − a

†
2

a2 − a
†
1

|η〉 = eiϕ |η〉 ϕ = arctan

(
η2

η1

)
.

The phase property of our new state S|00〉 is also different from that of the usual two-mode
squeezed state, because from (31) we see√√√√a1 − a

†
2

a2 − a
†
1

S|00〉 = e−λ
∫

d2η

π
|η〉 e−(η2

1+η2
2e−2λ)/2 exp

[
i arctan

(
η2

η1

)]
.
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This integration is different from√√√√a1 − a
†
2

a2 − a
†
1

S′′−1|00〉 = e−λ
∫

d2η

π
|η〉 e−|η2|e−2λ/2 eiϕ.

Mandel et al [3, 12, 13] have shown that in the phase measurement scheme using an eight-
port interferometer with four input photon modes, in the strong local oscillator limit and for
some particular reference phase, what the two detector pairs of the eight-port interferometer
measure actually are the two-mode operators (Q1 −Q2) and(P1 + P2), which correspond to
the difference in the photon numbers at the output, so the squeezing of either (Q1 −Q2) or
(P1 +P2) is worth discussing from both practical and theoretical point of views. The variation
of the photon-number difference may indirectly cause or affect the squeezing.

Now we introduce the state the common eigenvector |ξ〉 [7] of another pair of EPR
commutative operatorsQ1 +Q2 and P1 − P2; its explicit form in two-mode Fock space is

|ξ〉 = exp
[− 1

2

∣∣ξ ∣∣2
+ ξa†1 + ξ∗a†2 − a

†
1a

†
2

]|00〉 ≡ |ξ1, ξ2〉 (33)

where ξ = ξ1 + iξ2

(Q1 +Q2)|ξ〉 =
√

2ξ1|ξ〉 (P1 − P2)|ξ〉 =
√

2ξ2|ξ〉. (34)

is also complete∫
d2ξ

π
|ξ〉〈ξ | = 1.

The overlap between 〈η| and |ξ〉 is [8]

〈η|ξ〉 = 1
2 exp[i(η1ξ2 − η2ξ1). (35)

We can prove that in the 〈ξ | representation

S = e−λ/2
∫

d2η

π
|η〉〈η1, e−λη2|

∫
d2ξ

π
|ξ〉〈ξ |

= e−λ/2
∫

d2ξ

π

∫
d2η

2π
exp

[
−1

2
|η|2 + η1

(
a
†
1 − a

†
2 + iξ2

)

+ iη2
(
a
†
1 + a†2 − e−λξ1

)
+ a†1a

†
2

]
|00〉〈ξ |

= e−λ/2
∫

d2ξ

π
exp

[
−1

2
e−2λξ2

1 − 1

2
ξ2

2 + iξ2
(
a
†
1 − a

†
2

)

+ e−λξ1
(
a
†
1 + a†2

) − a
†
1a

†
2

]
|00〉〈ξ |

= e−λ/2
∫

d2ξ

π
|e−λξ1, ξ2〉〈ξ |

(36)

namely,

S|ξ〉 = e− λ
2 |e−λξ1, ξ2〉. (37)

The quantum fluctuation of quadratures in the new squeezed states is the same as that in the
usual squeezed state. To see this, using the operator identity

eAB e−A = B + [A,B] + 1
2! [A, [A,B]] + 1

3! [A, [A, [A,B]]] + · · ·
we obtain

SPS−1 = e−λP SXS−1 = eλX (38)
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which is in agreement with (37) and (26). It then follows that 〈0|S−1XS|0〉 = 0,
〈0|S−1PS|0〉 = 0. So the quantum fluctuations of quadrature operators in the state S|0〉 are
(
X)2= 1

4µ2 , (
P)2=µ2

4 , which are the same as in the ordinary two-mode squeezed vacuum
state.

4. The Hamiltonian for generating the squeezing

We now present the dynamic Hamiltonian for generating such a squeezing evolution. Let
the squeezing parameter µ = eλ in equation (26) (or (27)) be time-dependent µ (t) = eλ(t),
we seek the interaction Hamiltonian which can generate the continuous squeezing transform
|η〉 → |η1, eλη2〉. For this purpose, we differentiate (29) with respect to t and use (21) to
obtain

i
∂S(µ(t))

∂t
= i

∂λ(t)

∂t

(
(a1 + a2)

2 − (
a
†
1 + a†2

)2)
S(µ(t)). (39)

Comparing (39) with the standard form for the Schrödinger equation i ∂S(µ(t))
∂t

= H(t)S(µ(t))

in an interaction picture, we know the Hamiltonian is

H(t) = ∂λ(t)

∂t

i

4

[
(a1 + a2)

2 − (
a
†
1 + a†2

)2] = −∂λ(t)
∂t

1

2
[(P1 + P2)(Q1 +Q2) + i]. (40)

Such a dynamic mechanism may happen in a second-harmonic generation or parametric down-
conversion process. To realize it, one needs two incoming optical fields (E1 andE2) and a
nonlinear crystal for which the polarization℘ is not only a linear function of the two incoming
electric fields E1 +E2 but also involves quadratic (and even higher) powers of E1 +E2, that is

℘ = χ(1)(E1 + E2) + χ(2)(E1 + E2)
2 + · · ·

where

Ei(x, t) ∼ ai ei(kx−ωt) + a†i e−i(kx−ωt).

5. The squeezing corresponding to the transform |η1, η2〉 → |η1/µ, η2〉
Similarly, from equations (9) and (21) we have

〈η|(Q1 −Q2)(P1 − P2)/2 = −iη1
∂

∂η1
〈η| (41)

then letting η1 = ex , we see

〈η|(Q1 −Q2)(P1 − P2)/2 = −i ex
∂x

∂η1

∂

∂x
〈η1 = ex, η2| = −i

∂

∂x
〈η1 = ex, η2|. (42)

It then follows that

S′ ≡ e−i λ2 (Q1−Q2)(P1−P2)− λ
2 = e− λ

2

∫
d2η

π
|η〉(e−λ ∂

∂x 〈η1 = ex, η2|
)

= e− λ
2

∫
d2η

π
|η〉〈e−λη1, η2| (43)

or

S′ = e
λ
2

∫
d2η

π
|eλη1, η2〉〈η| = e− λ

2

∫
d2ξ

π
|ξ1, e−λξ2〉〈ξ |. (44)
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Using the IWOP technique, we perform the integration in (40) and obtain

S′ = 1√
coshλ

exp

{
− tanhλ

4

(
a
†
1 − a

†
2

)2
}

exp

{
−1

2

(
a
†
1 − a

†
2

)
(a1 − a2) ln coshλ

}

× exp

{
tanhλ

4
(a1 − a2)

2

}
. (45)

The corresponding squeezed vacuum state is

S′|00〉 = 1√
coshλ

exp

{
− tanhλ

4

(
a
†
1 − a

†
2

)2
}

|00〉 (46)

or

S′|00〉 = e− λ
2

∫
d2η

π
|η〉 e−(e−2λη2

1+η2
2)/2. (47)

Moreover, S′(P1 − P2)S
′−1 = eλ(P1 − P2), S

′(Q1 −Q2)S
′−1 = e−λ(Q1 +Q2). Due to

[(P1 + P2)(Q1 +Q2), (Q1 −Q2)(P1 − P2)] = 0

we see

〈η1, η2| eiλ[(P1+P2)(Q1+Q2)−(Q1−Q2)(P1−P2)]/2−λ = 〈η1, η2| eiλ[P2Q1+Q2P1] = e−λ〈e−λη1, e−λη2|
(48)

which is consistent with equations (7) and (12).

6. Wigner distribution functions of the one-sided squeezed state

The Wigner distribution is a useful concept in quantum mechanics,quantum statistics, quantum
optics and tomography technique [14–20]. Here we derive the Wigner functions of the one-
sided squeezed states. The two-mode Wigner operator in the 〈η| representation was obtained
in [21]:

�(σ, γ ) =
∫

d2η

π3
|σ − η〉〈σ + η| eηγ

∗−η∗γ . (49)

Because when we perform this integration with the IWOP technique and identify

γ = α + β∗ σ = α − β∗ (50)

we see that it is just equal to the direct product of two single-mode Wigner operators

�(σ, γ ) = �1(α, α
∗)⊗�2(β

∗, β) (51)

where [22]

�1(α1, α
∗
1 ) =

∫ ∞

−∞

du

2π
eip1u

∣∣∣q1 +
u

2

〉
11

〈
q1 − u

2

∣∣∣ = π−1 : e−2(α∗−a†1)(α−a1) : α = q1 + ip1√
2

�2(β
∗, β) =

∫ ∞

−∞

du

2π
eip2u

∣∣∣q2 +
u

2

〉
22

〈
q2 − u

2

∣∣∣ = π−1 : e−2(β∗−a†2)(β−a2) : β = q2 + ip2√
2

.

(52)

Further, performing the integration of �(σ, γ ) over d2γ leads to a projection operator∫
d2γ �(σ, γ ) = 1

π
|η〉〈η||η=σ . (53)
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Figure 1. Plot of the Wigner function defined in equation (56), for q2 = p2 = 1, q1 =
−2 . . . 2, p1 = −2 . . . 2, when λ = 1.

Thus, 〈ψ| ∫ d2γ �(σ, γ )|ψ〉 = 1
π
|〈η = σ |ψ〉|2 is a marginal distribution in the η variable.

Similarly,

〈ψ|
∫

d2σ �(σ, γ )|ψ〉 = 1

π
〈ψ|ξ〉〈ξ |ψ〉|ξ=γ (54)

is another marginal distribution in the ξ variable. Thus, the Wigner function 〈ψ|�(σ, γ )|ψ〉
represents a distribution in the η–ξ phase space. Due to equations (11) and (49) we have the
following matrix elements:

〈η′|�(σ, γ )|η〉 = 1

π
δ(2)(η′ + η − 2σ) exp[(η − σ)γ ∗ + (σ ∗ − η∗)γ ]. (55)

From (31), (11) and (49) we deduce the Wigner function of the new squeezed state

〈00|S†�(σ, γ )S|00〉 = eλ
∫

d2η′

π

∫
d2η

π
〈η′|�(σ, γ )|η〉 e−(η′2

1 +η′2
2 e−2λ+η2

1+η2
2e−2λ)/2

= eλ
∫

d2η′

π

∫
d2η

π2
δ(2)(η′ + η − 2σ)

× exp
[
(η − σ)γ ∗ + (σ ∗ − η∗)γ − (

η′2
1 + η′2

2 e−2λ + η2
1 + η2

2 e−2λ)/2
]

= 1

π2
exp

[−γ 2
2 − σ 2

1 − e2λγ 2
1 − e−2λσ 2

2

]
(56)

where

γ1 = 1√
2
(q1 + q2) γ2 = 1√

2
(p1 − p2) σ1 = 1√

2
(q1 − q2) σ2 = 1√

2
(p1 + p2).

Equation (56) is different from the usual two-mode squeezed state’s Wigner function (see the
difference between figure 1 and figure 3; also see figure 2),

〈00|S′′†�(σ, γ )S′′|00〉 = 1

µ2

∫
d2η′

π

∫
d2η

π
〈η′/µ|�(σ, γ )|η/µ〉 e−(|η|2+|η′|2)/2

= 1

πµ2

∫
d2η′

π

∫
d2η

π
δ(2)[(η′ + η)/µ− 2σ ]

× exp[−(|η|2 + |η′|2)/2 + (η/µ− σ)γ ∗ + (σ ∗ − η∗/µ)γ ]

= 1

π2
exp[−µ2|σ |2 − |γ |2/µ2]. (57)
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Figure 2. Plot of the Wigner function defined in equation (57), for q2 = p2 = 1, q1 =
−2 . . . 2, p1 = −2 . . . 2, when λ = 1.
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Figure 3. The variation of figure 1 when λ is changed to 10.

By analogy to the derivation of (56) we can obtain the Wigner function of S′|00〉

〈00|S′†�(σ, γ )S′|00〉 = e−λ
∫

d2η′

π

∫
d2η

π
〈η′|�(σ, γ )|η〉 e−(η′2

2 +η′2
1 e−2λ+η2

2+η2
1 e−2λ)/2

= 1

π2
exp

[−γ 2
1 − σ 2

2 − e2λγ 2
2 − e−2λσ 2

1

]
. (58)

Hence one can recognize the one-sided squeezed states from their Wigner distributions.

7. Entangled state |η〉 as the basis for deriving a more general squeezed state

We have revealed the connection between the new squeezing operator (S, S′) and the transform
of the entangled state |η〉. Here we further consider two successive operations of S(µ)S′(ν)
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on the vacuum state. Letting ν = eσ , µ = eλ and using (31) and (44) we have

S(µ)S′(ν) = ei λ2 (P1+P2)(Q1+Q2)−i σ2 (Q1−Q2)(P1−P2)− λ+σ
2

= √
µν

∫
d2η

π
|νη1, µη2〉〈η|. (59)

Operating it on |00〉 yields a general squeezed state

S(µ)S′(ν)|00〉 = 2
√
µν√
L

exp

{
1

2L

[
(ν2 − µ2)

(
a
†2
1 + a†22

)
+ 2(1 − ν2µ2)a

†
1a

†
2

]} |00〉 (60)

where L = (1 + µ2)(1 + ν2). When ν = 1, L = (1 + µ2)/2, equation (60) reduces to (30).
On the other hand, when µ = 1, equation (60) reduces to (46). One can get a more general
squeezing operator which corresponds to a more general transform (η1, η2) → �(η1, η2) in
|η〉, by constructing the following ket-bra integration:

S(�) = (det�)1/2
∫

d2η

π

∣∣∣∣�
(
η1

η2

)〉 〈(
η1

η2

)∣∣∣∣ (61)

where � is a 2 × 2 matrix which may be time dependent. Using the IWOP technique one
can also perform the integration in (61) and get its normal product form. Generally speaking,
equation (61) provides us with a way to design a two-mode squeezing. The preassigned general
time-dependent transformations

(
η1

η2

) → �
(
η1

η2

)
are taken as the starting point from which the

time-evolution operator U(t, 0) and then the corresponding time-dependent Hamiltonian are
derived. This is similar to [23] where the design of squeezing by time-dependent harmonic
oscillator is considered.

8. Application of the one-sided squeezed state

The new squeezed state S|00〉 may have potential applications in quantum information, for
example, in entanglement swapping. Entanglement swapping is an approach for obtaining
entanglement [24] which makes use of a projection of the state of two particles onto an
entangled state. This projection measurement does not necessarily require a direct interaction
between the two particles. For numerous uses of spatially separated entangled pairs of particles,
each of the particles is entangled with one other partner particle, an appropriate measurement,
for example, a Bell-state measurement of the partner particles, will automatically collapse the
state of the remaining two particles into an entangled state. Through entanglement swapping
one can entangle particles that do not even share any common past. Assuming that the initial
state of four particles is

|η〉12 ⊗ |η′〉34 (62)

where particles 1 and 2 are entangled as |η〉12, whereas particles 3 and 4 compose another state
|η′〉34.

We now perform a joint Bell-state measurement S14|00〉1414〈00|S−1
14 on particles 1 and

4, where the two-mode squeezing operator S14 is defined in (26), then the state of particles
2 and 3, which originally are not correlated, will become entangled immediately after the
measurement. To see this clearly, we calculate

(
14〈00|S−1

14

) |η〉12 ⊗ |η′〉34 = e−λ/2
∫

d2η′′

π
e−(η′′2

1 +η′′2
2 e−2λ)/2

14〈η′′|η〉12 ⊗ |η′〉34. (63)

Using (17) and the IWOP technique, we can prove

14〈η′′|η〉12|η′〉34 = exp
{− 1

2 (|η′′|2 + |η|2 + |η′|2) + ηη′′ − ηη′∗ + η′′∗η′∗}
× exp

[
a
†
2(η

′′ − η∗ − η′∗)− a
†
3(η

′′∗ − η − η′) + a†2a
†
3

]|00〉23. (64)
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By comparison with the definition of EPR state (5), we see that (64) is just an entangled state
of particles 2 and 3,

(14〈η′′|)|η〉12|η′〉34 = A|η′′ − η∗ − η′∗〉23 (65)

where

A = exp
[

1
2 (ηη

′′ − ηη′∗ + η′′∗η′∗)− 1
2 (η

∗η′′∗ − η∗η′ + η′′η′)
]

(66)

is actually a phase factor, since it is the difference between a complex number and its complex
conjugate. Substituting (65) into (63) gives

(
1,4〈00|S−1

1,4

)|η〉1,2|η′〉34 = e−λ/2A
∫

d2η′′

π
e−(η′′2

1 +η′′2
2 e−2λ)/2|η′′ − η∗ − η′∗〉23 (67)

From the definition expression (5) of |η〉, we know

|η〉23 = D(η) ea
†
2a

†
3 |00〉23 (68)

where

D(η) ≡ D
(
ηa

†
2 − η∗a2

)
is a displacement operator. Using

D(η + η′) = exp
[

1
2 (η

∗η′ − η′∗η)
]
D(η)D(η′)

and (68), we obtain

|η′′ − η∗ − η′∗〉23 = exp
{

1
2 [η′′∗(η∗ + η′∗)− (η + η′)η′′]

}
D(−η∗ − η′∗)|η′′〉23. (69)

Substituting (69) into (67) and comparing the result with (31), we conclude that equation (67)
denotes a displaced squeezed state S23|00〉23, thus particles 2 and 3 are entangled. The above
derivation is direct and concise because we have fully used the |η〉 representation of the
squeezing operators.

9. Generating a one-sided two-mode squeezed state by beam splitters

By comparing the form of (44) in the 〈η| representation with the single-mode squeezing
operator

e−λ/2
∫ ∞

−∞
dq |e−λq〉11〈q| = exp

[(
a2

1 − a
†2
1

)
λ/2

]
in the coordinate 1〈q| representation we naturally think of the following experiment: a single-
mode squeezed state and a vacuum state overlapping on a beam splitter may produce a
one-sided two-mode squeezed state at the output. The beam splitter operator is [25–27]

B = exp

[
θ

2

(
a
†
1a2 − a1a

†
2

)]
. (70)

It operates on the input state exp
(−a†21 tanhλ/2

)|0〉1 ⊗ |0〉2 and yields

Bsech1/2λ exp
(−a†21 tanhλ/2

)|0〉1 ⊗ |0〉2

= sech1/2λ exp
[−(

a
†
1 cos θ − a

†
2 sin θ

)2
tanhλ/2

]|0, 0〉. (71)

When θ = π/4, a symmetric beam splitter case, (71) becomes

sech1/2λ exp

[
− tanhλ

4

(
a
†
1 − a

†
2

)2
]

|0, 0〉 (72)

which is just the one-sided squeezed state (46).
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In summary, we have shown that the c-number asymmetric shrink (dilation) transform
in the EPR entangled state, i.e. |η1, η2〉 → |η1, η2/µ〉 (or |η1, η2〉 → |η1/µ, η2〉), maps onto
two kinds of one-sided two-mode squeezing operators in the Hilbert space. Equations (26),
(36) and (44) are new relations between two-mode squeezing and the transforms of entangled
states. The one-sided squeezing operators exhibit squeezing effect in the directions η1 and
η2, respectively. The 〈η| representation of the one-sided squeezing operators has enlightened
us to overlap a single-mode squeezed state and a vacuum state on a 50/50 beam splitter to
produce the one-sided two-mode squeezed state. The 〈η| representation also makes the IWOP
technique practical in deriving the normally ordered form of S and S′ and in constructing the
corresponding squeezed states. The entangled state representations of squeezing operators
and the IWOP technique provide a way to derive preassigned squeezing evolution, thus is
beneficial to squeezing design. The 〈η| representation of squeezing operators is also useful
for studying the phase behaviour of the Noh–Fougères–Mandel operational phase operator
in the two-mode squeezed states as shown in section 3. The Wigner functions of the new
squeezed states are also easily derived by virtue of the |η〉 representation. The more general
two-mode squeezed states can be theoretically constructed using equation (61). Using the 〈η|
representation of the squeezing operators, the derivation of quantum swapping or quantum
teleportation is direct and concise when the continuous EPR eigenstate or two-mode squeezed
state are used as a quantum channel. The 〈η| representation of the squeezing operators is a
‘tie’ connecting two-mode squeezing and quantum entanglement in a natural way.
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